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A veraion is offered of equations for large deformationa of a nor&allow spherical shell 

analogoua to the veraion of equations of Feodoa’ev [I] for ahallow shella. 
Procednrea are developed to overcome difficulties arising in the utiliration of the 

method of Bnbnov-Galerkin in the version of Papkovich. For the determination of the load- 
ing carve the method of transition to Canchy’a problem is naed. The practical convergence 
of the method of Bubnov-Galerkin in this problem is examined in detail. Since the l elation 
of the problem is determined in this case by two parameters x and 80, where 8, is the angle 

of inclination of the undeformed middle surface at the fixation1 = ROOs/h, R in the radios 
of the middle surface, h is the thickness of the shell, the resolts of the analysis of the 
behavior of the shell are presented for various x and & in the range 0 < 0, < 0.7, 

0 6 h < 70. 
Tables are given for upper and lower critical pressures. Reanltn are compared with 

results obtained from the theory of shallow shells and from other theories. 

1. We shall examine large axisymmetrical deformations of nonshallow spherical shell 
loaded nniformly by a distriboted external presmure. As a basis we take the following 
approximate relationships connecting displacementa and deformations: 
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Here su and utu are tangential and normal displacements of points of the middle 
aorface, R is the radioa of the middle norface, r is the moving radius. 8 is the polar 

angle (Fig. 1). 
The relationship between the components of deformation and atreaaea am written in 

the following form: 

Tl = E, (E~!,~’ -I- PO:“), T2 = El (q,:” S )~~ejiO)) (E, = EA / 0 - p”)) (1.5) 

M, = E, (s$ $ }LE,~)), M, = E, (E;;!:’ + pE$) (E, = Ehs / 12 (I - ~2)) (1.6) 

Here Tt. I’, are the shear resoltanta, hf,. Mr are bending momentn, Et is the rigidity 
of the shell in tension, El is the rigidity of the shell in bending. 

Eqs. (1.5) and (1.6) are obtained on the baais of Aooke’a law. 
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I 

Fig. 1 

Then from Lagrange’s principle the following 

;;:;;rn of equations arises for the equilibrium of the 
: 

~+(Tl-T~)ctgO=O (1.7) 

_C$ + (C&?!$ 
) 

ctg 8 - (Ml - MI) - 

-_R (T1 + Ts) - ~2~~8% - oRT2 ctg e - qw == 0 

(1.8) 

Here o is the angle of rotation of the normal 

with respect to the middle surface r = R, which is 

given by the relationship 

iaw u 

w=Tae-7 (1.9) 

In the derivation of Eqs. (1.7) and (1.8) identification of the internal geometry of the 

shell with the geometry in the plane was not made. This distinguishes this system from 
known versions of equations of equilibrium in the theory of shallow shells. 

We shall examine a sliding hinge fixation which has the following boundary conditions: 
for 8 = &, where 19~ is the angle characterizing the fixation location of the dome (Fig. 1) 

&wtge~=ot w= 0, I# = 0 

Here I+$ is a stress function 

Tl=&, 
1 d$ T,=------ 

coso d0 

(1.10) 

(1.11) 

If one now substitutes (1.3). (1.4), (1.6) and (1.11) into (1.8). then takes dw/d6 = P, 
and integrates the newly obtained equation with respect to 8 between the limits from 0 to 8, 
we will finally have 

(1.22) 

Two unknown functions w and (CI enter into Eq. (1.12). The second relationship con- 

necting w and $ will be the equation of compatibility. In order to obtain it we substitute 
(1.1) to (1.4) into (1.11) and eliminate U. As a result we shall have 

Let us introduce nondimensional quantities with the aid of the following relationships 

EhJ 
$= -x$0, cp= -$,, w=--huo, 
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P 

0=pe, e= “, wo= qb(t)dt, 0 c 
1 

Eqs. (1.12) and (1.13) and conditions (1.10) are represented in the following font: 

s* sin EP _- -A 

do? e 

e cos* en 
Itesinep+,i,, = 

(1.M) 

d/dt ($(sin ~t)/e) 
&]_t. fjqop~(‘+,,“)’ (1.15) 

0 

2. Let us assume that it is necessary to determine the loading curve for the dome, 
i.e. to find the dependence of go on its own nondimecsional displacement at the center 

maI p z o = f. It is easy to ace that f is determined by the relationship: 

I= \ ‘RI (‘1 dt 

1 

System (1.141, (1.15) wiIl be solved by the method of Bnbaov-Galerkin. Let us assume 

(2,2f 

Here, boundary conditions (1.16) are satisfied. 
It is necessary to note that the application of the procedure by Papkovich is com- 

plicated in this case in contrast to the case of shallow shells, since Eq. (1.14) is an 
equation with variable coefficients. If one takes into account relationships (2.2), the fol- 
lowing expressions are obtained for q~o and we: 

N 

q =_ 2 Ai& (Ai = . Ci - ficitl, co =.: 0) 

C=tl 

Therefore the right-hand part of (1.14) is an entire function of p. 
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It ‘ia natwd to look for a uhtion of (2.5) in tks fom 

a0 

9,’ = pan+s 5 d,(“)p’k. 
O.-u 

(2.f3 

(2.7) 

B-e $n’ Is the puti~~iu AMion of the inhomogeneous Eq. (2.5) and $s** is the 

general solotion of the corresponding homogeneoam solution. Arbitrary constants 

6, = (i ,p) (2 q- 
a-0 I.=0 

(2.8) 

are determined from the condition lpo 1 p=1 = 0. 

Sobstitsting (2.6) to (2.8) into (2.5) and equating coefficients of the left end right 
sides of the transformed equation for sqoal powers of p. we obtain 

d*(n) = i -. 
4 (‘h + 1) (n + 21 

i d,(n) = _. -_- 
4 (n d- k + I) (n -1 k + 2) x 

80 - -1, ea = dir(‘), k ,, i (2.if) 

Here E, are Eoler’a nambsrs, B, are Bamoolli’s combers. 
Rslationnhips (2.9) to (2.11) am comect when 8 < )(; n. We substitute (2.2) and (2.6) 

into the left put of (1.15) and require that the obtained expnedon be orthogonal 
(pa’+s _ yflar+t), r = 1, 2, . . . . N. 

In this manner we obtain an algebraic system of equations of the third order for de- 
derminstion of Cf + t: 

+ so nz F. Ci+lC~r+lCj+lA*njm = “mq0 (2.12) 
*SD 

coefficients A% A% A imns Ainjm depend on the parameter E = 60. Canse- 
qaently the nonlinear aroblem of stability ondsr examination in this case will have two 
pammetsw ( b = HOf / h and E = eO), whioh ~abot~ntially complicates the examina- 
tion of the problem. 

For determfnetioa of C, + t and q. we utilize the idea presented in !21 applied to the 
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Fig. 2 

inveetigetlon of a shallow l phericef dome . Ae independ- 
ent permeeter either the nondimeneionel dfeplecdment 

f = &+1 (Bg&-&*) (2.13) 

or the nondimeneionel preeears q. can be teken. Corree- 
pondingly, from (2.12) end (2.13) we obtein the following 
two eyetema of differential Eqs: 5 -- --.. 
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Fig. 3 

+ f!$ $ (Ainjm + &jm + Aj~nn)Cn+lCj+l] - 2 Am =O 
nz0 j:_o 

N 

W -ri I dCi_1 di _ = - -.- 
c~ 2i+2 2i + 4 > dqo dqo 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

Ae initial dete we mey t&e elemeate of the anstrered etete of the ehell in the 
absence of loeding, i.e. for f = 0, q. - 0. chl = 0. The integretion of l ymtenw (2.14). 

(2.15) end (2.16), (2.17) wee curied oat by the ihap-Klrtta m&hod. In thim cue it im 

convenient to integrate system (2.14). (2.15) l e long u dqJdf im not very large. 
In the opposite cue it ie l ppropriete te integrate l yetem (2.16), (2.17). 
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Fig. 4 

Pig. 6 

The progrue was compoeed for the electronic 
digital compu:er ‘Minsk-12’. It condetad of etaed- 
erd hlooke and ellowed automatic l witching of 
integration from one l yotem to the other. 

3. Let ue axemine reeolts of competatione. 
Curvem qcr f were competed for the following 

I 

t 

2 Y 6 

Fig. 5 

_----_ 
-W. 

Fig. 7 

eombfnations of voloea of peramatem A end 8: 

E= 0.187 (I = 2,4,5,12,15,30,50,70] 
e= 0.273{A. = 5, 12,15, 30,50,70) 
e= 0.5 {k = 15,30,50, 70) 
e= 0.7 (A = 30) 

The eelection of odtmts of parameter h in ita dependence on E wae determined from 
the coaditlon 

R/h>50 (3.1) 

It was found that the method of 

TabIs 1 Bebnov-Galerkie gives satisfactory 
accuracy on the baeis of the fourth 

f i 
I 

2 
I 

3 
I 

4 approximation for the upper end aleo 
the lower critical loadinge in the ceee 

(Table 1, , continued OR the nerl paga) 

e=O.i87, ), < 5, 8 < 0.3. In the ather caoea. 
reliable reeelte are obteinqd only for 
apper critical loading.. Table 1 ie 
presented for charaetsrixation of the 
rate of uonvergence of velasa 40. 

It ie evident from the Table that 
in the caee I < 5, E B; 0.3 the 
fourth approximation differ0 from the 
third by no more then 0.2%. In the 
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( Table I continued ftom ptaviour page) 

0.2 
1.0 

;*z 
216 
3.0 

0.2 
1.0 
1.6 
3.0 
3.6 
4.0 

eti.187, A=4 

0.7739 0.8294 0.8364 0.8331 
2.479 2.591 * 

2.797 2.821 2.818 2.731 2:695 22.E 

2.600 

2.814 2.698 
2.932 2.655 2.550 2.548 
3.265 2.920 2.793 2.785 

e-+.187, A=5 

1.074 l.ifZ I i.183 1.174 
3.5/11 3.595 3.822 3.820 
3.973 4.1F1 4.176 4.184 
3.178 2.585 2.150 2.160 
3.210 2.264 1.534 1.531 
3.722 2.764 2.129 

I 
2.103 

0.2 
1.0 
2.0 
2.ri 

0.2 

;:: 

E 

e=0.167, 

Q.$79 5.999 
20.57 23.57 
30.9G 3’1.01 
32.87 315.13 

e- 0.187, 

174.0 1 235.6 
839.8 1020 
iGO 1678 
2’99 2053 
2922 2213 

~-0.273, 

1.055 1.149 
3.482 3.736 
3.912 4.100 
3.803 3.854 

A=- 12 

6.111 
23.U 
30.23 
28.12 

h==70 

io’i.4 
490.8 
910.4 
1268 
1570 

?,=5 

5.788 
23.16 
30.80 
23.34 

113.1 
523.6 
951.2 
1298 
1581 

1.16’1 

I 

1.160 
3.764 3.7G6 
4.115 4.125 
3.830 3.84/t 

e=0.273. 

0.2 
1.0 
2.2 

170.2 240 :3 
821.4 1037 
15iO 1702 
2248 2oso 
2857 2245 

%t 2252 2137 

EzO.5, 

ezO.273, ki70 

102.5 
482.6 
897.2 
1254 
1558 
1812 

, 2010 

114.4 
544.6 
1016 
1413 
1729 
1955 
2081 

(Tobls I continued on the narl pogc) 

case of large A thim difference does 
not exceed 3%. 

In Fin. 2 and 3 the dependeoee 
of q. on f is shown, obtained in the 
firat to fourth l pproxfmationa when 
8 - 0.187; h- 2.5. From theoe grapha 
it ia evident that the third snd fourth 
approximationa are practically india- 
tinguishable. In caaea e = 0.273; 
x = 15 and 8 = 0.7; A = 30 satirrfactory 
agreement between the third and the 
fourth approximation ia achieved only 
on segment0 of loading curvea mhown 
in Figa. 5, 4 and 5. A eommary table 
of upper critical loadinga in preaeated 
for various values of E and h (T&la 2). 
It may be noted that with increasing 
X for a given E the upper critical 
values qO+ increase ae ie evident from 
the presented table. 

In the determination of diaplace- 
mento it wao posaible to obtain natin- 
factory accuracy on the basin of the 

foorth approximation. In thi* con- 
nection the approximation of the de- 
flection curve was carried out by 
means of a polynomial of tenth degree 
in accordance with (2.2). 

In Figa. 6 to 8 variooa stagea of 
loading of ahella are represented for 
several values oft!! and A. In Fig. 6 
the cane e - 0.273; x - 5 is examined. 

Position I corrempendn to loading 
qo, which ia lesa than the upper cri- 
tical value. Poaltlon II correaponda 
to loading q,+ which in the apper 
critical loading. The third position 
correaponda to loading qa exceeding 
the upper critical valoe. 

In Fig. 7 the development of 
equilibrium forms of the ahell im 
given for valoem of c - 0.273; 
A - 12, and, finally, in Fig. g three 
poaitionn of nonshallow spherical 
segment are depicted for E - 0.7 
and h = 30. 

The magnitudea of upper critical 
value* obtained in this paper in the 
came of c 5 0.2; A_< 5 differ little 
from qaantitfea q,+ for shallow 
apharical ahellm. 

For comparison we note that the 
value qf calculated in the fourth 
approximation from the theory of 
ahallow domes will be q.+- 2.84 
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(Table 1 aonthred j%oa pnvfow page) 

I i 
I 

a 
I a 

I 
4 _----_ 

1-0.5, k-70 
0.2 

::: 

153.5 Yi: 93.5i 100.9 \ 

zi3 i8f3 443.1 

Yii 1760 

470.8 865.6 ,’ .- __---_ -. 

::o” 3055 2569 E 1487 1146 \ 

r-n-7, x=30 Fig. 8 

109.5 23.90 176.3 46.04 132.6 23.50 97.25 21.25 (X - 4). qe+ = 4.22 (h= 5) and the COP 

195.1 
g:: 259:o ;;;*; 

232.0 175.8 responding valses from theory of non- 
288.9 241.4 ehallow domee are qe+= 2.84, qe+- 4.22. 
303.0 291.5 It is appropdate to mention the 

noticeable effect of the nonehallow 
character of the ehell on the lower 

Table 2 

e 1 X=70 I 50 I 38 I i5 I 12 I 5 I 4 

:-i:; . 2121 

E5 

909.8 901.1 245.7 251.3 ZEi 2.814 

8:: 1026 314.5 276.5 52:85 

30.6 30.4 4.164 4.125 

critical valneo. Than for h = 4 we have qe- = 2.78 according to the theory of shallow 

ehelle and qe - 2.53 from the theory of nonshallow shells. For A = 5, qr- = 3.00 and 
q,- - 1.48, respectively. It may be noted that the theory of A.V. Pogorelov gives 

l abetially higher valaer for apper critical loadinga 

1. 

2. 
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