STABILITY OF A NONSHALLOW SPHERICAL DOME

PMM Vol. 32, No. 2, 1968, pp. 332-338

I.I. VOROVICH and N.I. MINAKOVA
(Rostov-on-Don)

(Received October 20, 1967)
A version is offered of equations for large deformations of a nonshallow spherical shell analogons to the version of equations of Feodos'ev[1] for shallow shells.

Procedures are developed to overcome difficulties ariaing in the utilization of the method of Bubnov-Galerkin in the version of Papkovich. For the determination of the loading curve the method of transition to Canchy's problem is used. The practical convergence of the method of Bubnov-Galerkin in this problem is examined in detail. Since the solution of the problem is determined in this case by two parameters λ and θ_{0}, where θ_{0} is the angle of inclination of the undeformed middle surface at the fixation $\lambda=R \theta_{0}{ }^{2} / h, R$ ia the radius of the middle surface, h is the thickness of the shell, the results of the analyais of the behavior of the shell are presented for various λ and θ_{0} in the range $0<0_{0} \leqslant 0.7$, $0 \leqslant \lambda \leqslant 70$.

Tables are given for upper and lower critical pressures. Resulte are compared with results obtained from the theory of shallow shells and from other theories.

1. We shall examine large axisymmetrical deformations of nonshallow spherical ahell loaded nniformly by a distributed external pressure. As a basis we take the following approximate relationships connecting displacements and deformations:

$$
\begin{gather*}
u=u_{0}+\frac{2}{R}\left(u_{0}-\frac{\partial w_{0}}{\partial \theta}\right), \quad w=w_{0,} \quad z=r-R \tag{1.1}\\
\varepsilon_{r r}=\frac{\partial u_{0}}{\partial r}=0, \quad \varepsilon_{\varphi \rho}=\varepsilon_{\rho ;}^{(0)}+z \varepsilon_{\varphi \cdot}^{(1)}, \quad \varepsilon_{\theta 0}=\varepsilon_{\theta \theta}^{(0)}+z \varepsilon_{\theta \theta}^{(1)} \tag{1.2}\\
\varepsilon_{\varphi \varphi}^{(0)}=\frac{1}{R \sin \theta}\left(u_{0} \sin \theta-u_{0} \cos \theta\right), \quad \varepsilon_{\varphi \cdot}^{(1)}=-\frac{\operatorname{ctg} \theta}{R^{3}} \frac{\partial w_{0}}{\partial \theta} \tag{1.3}\\
\varepsilon_{\theta \theta}^{(0)}= \tag{1.1}\\
=\frac{1}{R}\left(\frac{\partial u_{0}}{\partial \theta}+w_{\varphi}\right)+\frac{1}{2 R^{2}}\left(\frac{\partial w_{0}}{\partial \theta}\right)^{2}, \quad \varepsilon_{\theta \theta}^{(1)}=-\frac{1}{R^{3}} \cdot \frac{\partial^{n} w_{0}}{\partial \theta^{3}}
\end{gather*}
$$

Here u_{0} and w_{0} are tangential and normal displacements of pointa of the middle surface, R is the radins of the middle surface, r is the moving radius, θ is the polar angle (Fig. 1).

The relationship between the components of deformation and stresses are written in the following form:

$$
\begin{align*}
& T_{1}=E_{1}\left(\varepsilon_{\theta 0}^{(0)}+\mu \varepsilon_{00}^{(1)}\right), \quad T_{2}=E_{1}\left(\varepsilon_{\theta 0}^{(1)}+\mu \varepsilon_{\theta 0}^{(0)}\right)\left(E_{1}=E h /\left(1-\mu^{2}\right)\right) \tag{4.5}\\
& M_{1}=E_{2}\left(\varepsilon_{\varphi \varphi}^{(0)}+\mu_{\varphi \rho}^{(1)}\right), \quad M_{2}=E_{2}\left(\varepsilon_{\varphi p}^{(1)}+\mu \varepsilon_{\varphi \varphi}^{(0)}\right) \quad\left(E_{2}=E h^{3} / 12\left(1-\mu^{2}\right)\right) \tag{1,6}
\end{align*}
$$

Here T_{1}, T_{2} are the shear resultants, M_{1}, M_{2} are bending moments, E_{1} is the rigidity of the shell in tension, E_{2} is the rigidity of the shell in bending.

Eqs. (1.5) and (1.6) are obtained on the basis of Hooke's law.

Fig. 1

Then from Lagrange's principle the following syatem of equations arises for the equilibrium of the shell:

$$
\begin{gather*}
\frac{\partial T_{1}}{\partial \theta}+\left(T_{1}-T_{2}\right) \operatorname{ctg} \theta=0 \tag{1.7}\\
\frac{\partial^{3} M_{1}}{\partial \theta^{2}}+\left(\frac{\partial M_{1}}{\partial \theta}-\frac{\partial M_{2}}{\partial \theta}\right) \operatorname{ctg} \theta-\left(M_{1}-M_{2}\right)- \\
-R\left(T_{1}+T_{2}\right)-R^{2} T_{1} \varepsilon_{\varphi \varphi}^{(1)}-\omega R T_{2} \operatorname{ctg} \theta-q R^{2}=0 \tag{1.8}
\end{gather*}
$$

Here ω is the angle of rotation of the normal with respect to the middle aurface $r=R$, which is given by the relationship

$$
\begin{equation*}
\omega=\frac{1}{r} \frac{\partial w}{\partial \theta}-\frac{u}{r} \tag{1.9}
\end{equation*}
$$

In the derivation of Eqs. (1.7) and (1.8) identification of the internal geometry of the shell with the geometry in the plane was not made. This distinguishes this system from known versions of equations of equilibrium in the theory of shallow shells.

We shall examine a sliding hinge fixation which has the following boundary conditions: for $\theta=\theta_{0}$, where θ_{0} is the angle characterizing the fixation location of the dome (Fig. 1)

$$
\begin{equation*}
\frac{d^{2} w}{d \theta^{2}}+\mu \operatorname{ctg} \theta \frac{d w}{d \theta}=0, \quad w=0, \quad \psi=0 \tag{1.10}
\end{equation*}
$$

Here ψ is a stress function

$$
\begin{equation*}
T_{1}=\frac{\psi}{\sin \theta}, \quad T_{3}=\frac{1}{\cos \theta} \frac{d \psi}{d \theta} \tag{1.11}
\end{equation*}
$$

If one now substitutes (1.3), (1.4), (1.6) and (1.11) into (1.8), then takes $d w / d \theta=\varphi$ and integrates the newly obtained equation with respect to θ between the limits from 0 to θ, we will finally have

$$
\begin{align*}
& \frac{\boldsymbol{E}_{2}}{R^{2}}\left[\frac{d^{2} \varphi}{d 0^{2}}+\operatorname{ctg} \theta \frac{d \varphi}{d \theta}-\varphi\left(\mu+\operatorname{ctg}^{2} \theta\right)\right]-\frac{\varphi \psi}{\sin \theta}+ \\
+ & \frac{R}{\sin \theta} \int_{0}^{\theta} \frac{d / d \theta(\psi \sin \theta)}{\cos \theta} d \theta+2 q R^{2} \sin ^{2} \frac{\theta}{2} \frac{1}{\sin \theta}=0 \tag{1.12}
\end{align*}
$$

Two unknown functions w and ψ enter into Eq. (1.12). The second relationship connecting ω and ψ will be the equation of compatibility. In order to obtain it we substitute (1.1) to (1.4) into (1.11) and eliminate u. As a result we shall have

$$
\begin{gather*}
\frac{d^{2} \psi}{d \theta^{2}}+\frac{d \psi}{d \theta}(\operatorname{ctg} \theta+2 \operatorname{tg} \theta)-\psi\left(\operatorname{ctg}^{2} \theta+\mu\right)+ \\
+\frac{E_{1}\left(1-\mu^{2}\right)}{R}\left[\frac{\cos ^{2} \theta}{2 R \sin \theta}\left(\frac{d w}{d \theta}\right)^{2}-\cos 0 \frac{d v}{d \theta}-w \sin \theta\right]=0 \tag{1.13}
\end{gather*}
$$

Let us introduce nondimensional quantities with the aid of the following relationships

$$
\psi=-\frac{E h^{\mathbf{s}}}{R^{2} \varepsilon} \psi_{0}, \quad \varphi=-\frac{h}{\varepsilon} \varphi_{0}, \quad w=-h u_{0}, \quad \lambda=\frac{R \varepsilon^{?}}{h}
$$

$$
\theta=\mathrm{p} \mathrm{\varepsilon}, \quad \varepsilon=\theta_{0}, \quad u_{0}=\int_{1}^{p} \varphi_{0}(t) d t, \quad q_{0}=\frac{q}{E}\left(\frac{R \varepsilon}{h}\right)^{4}
$$

Eqs. (1.12) and (1.13) and conditions (1.10) are represented in the following form:

$$
\begin{array}{r}
\frac{d^{2} \psi_{0}}{d 0^{2}} \frac{\sin \varepsilon \rho}{\varepsilon}+\frac{d \psi_{0}}{d \theta}\left(\cos \varepsilon \rho+2 \frac{\sin ^{2} \varepsilon \rho}{\cos \varepsilon \rho}\right)-\psi_{0}\left(\mu \varepsilon \sin \varepsilon \rho+\frac{\varepsilon \cos ^{2} \varepsilon \rho}{\sin \varepsilon \rho}\right)= \\
=\varphi_{0} \frac{\sin 2 \varepsilon \rho}{2 \varepsilon} \lambda+\lambda \sin ^{2} \varepsilon \rho w_{0}+\frac{\varphi_{0}^{2} \cos ^{2} \varepsilon \rho}{2} \\
\frac{1}{1-\mu^{2}}\left[\frac{d^{2} \varphi_{0}}{d 0^{2}} \frac{\sin \varepsilon \rho}{\varepsilon}+\frac{d \varphi_{0}}{d \theta} \cos \varepsilon \rho-\varphi_{0}\left(\mu \varepsilon \sin \varepsilon \rho+\frac{\varepsilon \cos ^{2} \varepsilon \rho}{\sin \varepsilon \rho}\right)\right]= \\
\left.=-12\left[\varphi_{0} \psi_{0}+\lambda\right]_{0}^{1} \frac{d / d t\left(\psi_{0}(\sin \varepsilon t) / \varepsilon\right)}{\cos \varepsilon t} d t\right]+6 q_{0} \rho^{2}\left(\frac{2 \sin \varepsilon_{\rho} / 2}{\varepsilon \rho}\right)^{2} \\
{\left[\frac{d \varphi_{0}}{d \theta}+\mu \varepsilon \varphi_{0} c t g \varepsilon \rho\right]_{\rho=1}=0,\left.\quad w_{0}\right|_{\rho=1}-0,\left.\quad \psi_{0}\right|_{\rho=1}=0} \tag{1.16}
\end{array}
$$

2. Let us assume that it is necessary to determine the loading curve for the dome, i.e. to find the dependence of q_{0} on its own nondimescional displacement at the center $w_{0} \|_{\rho=0}=f$. It is easy to see that f is determined by the relationship:

$$
\begin{equation*}
J=\int_{1}^{0} \varphi_{0}(t) d t \tag{2.1}
\end{equation*}
$$

System (1.14), (1.15) will be solved by the method of Bubnov-Galerkin. Let us assume

$$
\begin{equation*}
\varphi_{0}=\sum_{i=0}^{N} c_{i+1}\left(\mathrm{p}^{2 i+3}-\gamma_{i} \mathrm{p}^{2 i+1}\right) \quad\left(\gamma_{i}=\frac{2 i+3+\mu \varepsilon \operatorname{ctg} \varepsilon}{2 i+1+\mu \operatorname{ctg} \varepsilon}\right) \tag{2.2}
\end{equation*}
$$

Here, boundary conditions (1.16) are satisfied.
It is necessary to note that the application of the procedure by Papkovich is complicated in this case in contrast to the case of shallow shells, since Eq. (1.14) is an equation with variable coefficients. If one takes into account relationships (2.2), the following expressions are obtained for φ_{0} and ω_{0} :

$$
\begin{array}{cc}
\varphi_{0}=\sum_{i=0}^{N} A_{i} \rho^{i+1} & \left(A_{i}=-C_{i}-r_{i} C_{i+1}, C_{0}=0\right) \\
w_{0}=\sum_{i=0}^{N} \frac{A_{i}}{2 i+2} p^{2 i+2}-u_{1} & \left(w_{1}=\sum_{i=0}^{N} C_{i+1}\left(\frac{1}{2 i+4}-\frac{r_{i}}{2 i+2}\right)\right) \tag{2.4}
\end{array}
$$

Therefore the right-hand part of (1.14) is an entire function of ρ.

$$
\begin{equation*}
\frac{d^{2} \psi_{0}}{d \theta^{2}} \frac{\sin \varepsilon \rho}{\varepsilon}+\frac{d \psi_{0}}{d \theta}\left(\cos \varepsilon \rho+2 \frac{\sin ^{2} \varepsilon \rho}{\cos \varepsilon \rho}\right)-\psi_{0}\left(1 \varepsilon \sin \varepsilon \rho+\frac{\varepsilon \cos ^{*} \varepsilon \rho}{\sin \varepsilon \rho}\right)=\sum_{n=0}^{\infty} f_{n} p^{2 n+2} \tag{2.5}
\end{equation*}
$$

It is nataral to look for a molution of (2.5) in the form

$$
\begin{align*}
& \psi_{0}=\sum_{n=0}^{\infty} f_{n} \psi_{n}(\rho) \quad\left(\varphi_{n}=\varphi_{n}^{*}-\delta_{n} \varphi_{n}^{* *}\right) \tag{2.6}\\
& \psi_{n}^{*}=\rho^{8 n+3} \sum_{k=0}^{\infty} d_{k}^{(n)} \rho^{2 k}, \quad \varphi_{n}^{* *}=\rho \sum_{k=0}^{\infty} e_{k} \rho^{2 k} \tag{2.7}
\end{align*}
$$

Here ψ_{n}^{*} is the particular solution of the inhomogeneous Eq. (2.5) and $\psi_{n}^{* *}$ is the general solution of the corremponding homogeneous solution. Arbitrary constants

$$
\begin{equation*}
\delta_{n}=\left(\sum_{k=0}^{\infty} d_{k}^{(n)}\right)\left(\sum_{k=0}^{\infty} e_{k}\right)^{-1} \tag{2.8}
\end{equation*}
$$

are determined from the condition $\left.\psi_{0}\right|_{\rho=1}=0$.
Subatitating (2.6) to (2.8) into (2.5) and equating coefficients of the left and right sides of the transformed equation for equal powers of ρ, we obtain

$$
\begin{gather*}
d_{0}^{(n)}=\frac{1}{4(n+1)(n+2)} \tag{2.9}\\
d_{k}^{(n)}=-\frac{1}{4(n+k+1)(n+k+2)} \times \tag{2.10}\\
\times\left\{\sum_{t=0}^{k-1} d_{4}^{(n)} \frac{\left(\mathrm{e}^{2}\right)^{1-s}}{(2 k-2 s)!}\left[(2 n+2 s \uparrow 3) 2\left|E_{2 l-2 s}\right|-\left(4^{k-s}-2\right)\left|B_{2 l-2 s}\right|\right]-\right. \\
\left.-\sum_{k=0}^{k-1} d_{s}^{(n)} \frac{\left(-e^{2}\right)^{k-s}}{(2 k-2 s-1)!}\left[(1-\mu)+\frac{n+s+1.5}{k-s}-\frac{(n+s+1.5)(n+s+1)}{(k-s)(k-s+0.5)}\right]\right\}, k \geqslant 1 \\
e_{0}=1, \quad e_{k}=d_{k}^{(1)}, \quad k \geqslant 1 \tag{2.11}
\end{gather*}
$$

Here E_{n} are Euler's numbers, B_{n} are Bernoulli's numbers.
Relationships (2.9) to (2.11) are correct when $\theta<1 / 2 \pi$. We substitute (2.2) and (2.6) into the left part of (1.15) and require that the obtained expression be orthogonal $\left(\rho^{2 r+3}-\gamma_{r} \rho^{2 r+1}\right), r=1,2, \ldots, N$.

In this manner we obtain an algebraic system of equations of the third order for dedermination of C_{i+1} :

$$
\begin{align*}
& \sum_{i=0}^{N} c_{i+1}\left[A_{i m}^{(1)}+\lambda^{2} A_{i m}^{(2)}\right]+\lambda \sum_{i=0}^{N} \sum_{n=0}^{N} c_{i+1} c_{n+1} A_{i m n} \\
& \quad+\sum_{i=0}^{N} \sum_{n=0}^{N} \sum_{j=0}^{N} c_{i+1} C_{n+1} c_{j+1} A_{i n j m}=A_{m} q_{0} \tag{2.12}
\end{align*}
$$

Coefficient: $A_{i m}^{(1)}, A_{i m}^{(2)}, A_{i m n}, A_{i n j m}$ depend on the parameter $\varepsilon=\theta_{0}$. Consequently the nonlinear problem of atability under examination in this case will have two parameters ($\lambda=K 0_{0}{ }^{2} / h$ and $\varepsilon=\theta_{0}$), which aubetantially complicates the examination of the problem.

For detemination of C_{n+1} and q_{0} we utilize the idea presented in [2] applied to the

Fig. 2
investigation of a shallow epherical dome. As independent paremeter either the nondimensional dieplacement

$$
\begin{equation*}
t=\sum_{k=0}^{\infty} C_{k+1}\left(\frac{\Upsilon_{k}}{2 k+2}-\frac{1}{2 k+4}\right) \tag{2.13}
\end{equation*}
$$

or the nondimensional pressure $q 0$ can be taken. Correepondingly, from (2.12) and (2.13) we obtain the following two systems of differential Eqs:

Fig. 3

$$
\begin{align*}
& \sum_{i=0}^{N} \frac{d C_{i+1}}{d t}\left[\left(A_{i m}^{(1)}+\lambda^{3} A_{i m}^{(2)}\right)+\lambda \sum_{n=0}^{N}\left(A_{i n m}+A_{n i m}\right) C_{n+1}+\right. \\
& \left.+\sum_{n=0}^{N} \sum_{j=-0}^{N}\left(A_{i n j m}+A_{n i j m}+A_{j i n m}\right) C_{n+1} C_{j+1}\right]-\frac{d q_{0}}{d f} A_{m}=0 \tag{2.14}\\
& \sum_{i=0}^{N}\left(\frac{\gamma_{i}}{2 i+2}-\frac{1}{2 i+4}\right) \frac{d C_{i+1}}{d f}=1 \quad(m=1,2 \ldots, N) \tag{2.15}\\
& \sum_{i=1}^{N} \frac{d C_{i+1}}{d q_{0}}\left[\left(A_{i m}^{(1)}+\lambda^{2} A_{i m}^{(2)}\right)+\lambda \sum_{n=0}^{N}\left(A_{i n m}+A_{n i m}\right) C_{n+1}+\right. \\
& \left.+\sum_{n=0}^{N} \sum_{j=0}^{N}\left(A_{i n j m}+A_{n i j m}+A_{i i n m}\right) C_{n+1} C_{j+1}\right]-A_{m}=0 \tag{2.16}\\
& \sum_{i=0}^{N}\left(\frac{\gamma i}{2 i+2} \cdots \frac{1}{2 i+4}\right) \frac{d C_{i+1}}{d q_{0}}=\frac{d f}{d q_{0}} \quad(m=1,2, \ldots, N) \tag{2.17}
\end{align*}
$$

As initial data we may take elements of the unstreased state of the shell in the absence of loading, i.e. for $f=0, q_{0}=0, C_{i+1}=0$. The integration of aystems (2.14), (2.15) and (2.16), (2.17) was carried out by the Runge-Kutta mechod. In this case it is convenient to integrate eystem (2.14), (2.15) as long as dqd df is not very large.

In the oppoaite case it ia appropriate to integrate aystem (2.16), (2.17).

Fig. 4

Fig. 6

The program was composed for the electronic digital computer 'Minak-12'. It consiated of atandard blocke and allowed antomatic awitching of integration from one syatem to the other.
3. Let ua examine resulte of compatations. Curves qo f were compated for the following

Fig. 5

Fig. 7
combinations of values of parameters λ and ε :

$$
\begin{aligned}
& \varepsilon=0.187\{\lambda=2,4,5,12,15,30,50,70\} \\
& \varepsilon=0.273\{\lambda=5,12,15,30,50,70\} \\
& \varepsilon=0.5\{\lambda=15,30,50,70\} \\
& \varepsilon=0.7\{\lambda=30\}
\end{aligned}
$$

The selection of values of parameter λ in its dependence on ε was determined from the condition

$$
\begin{equation*}
R / h \geqslant 50 \tag{3.1}
\end{equation*}
$$

Table 1

f	1	2	3	4		
$\varepsilon=0.187$						$\lambda=2$
0.2	0.3885	0.3990	0.3997	0.3994		
1.0	1.426	1.418	1.416	1.416		
2.0	2.902	2.922	2.928	2.028		
3.0	6.065	7.371	7.512	7.532		
4.0	14.95	18.29	18.64	18.94		

(Table 1, continued on the noxt page)
It was found that the method of Bubnov-Galerkin gives satisfactory accuracy on the basis of the fourth approximation for the upper and also the lower critical loadings in the case $\lambda \leqslant 5, \varepsilon \leqslant 0.3$. In the other cases, reliable results are obtained only for upper critical loadinga. Table 1 is presented for charactorization of the rate of convergence of values qu.

It is evident from the Table that in the case $\lambda \leqslant 5, \varepsilon<0.3$ the fourth approximation differs from the third by no more than 0.2 m . In the
(Table 1 continued from previows page)

f	1	2	3	4
	$\varepsilon=0.187$,		$\lambda=4$	
0.2	0.7739 0.8294		0.8364	0.8331
1.0	2.479	2.591	2.600	2.600
1.6	2.797	2.818	2.811	2.814
2.0	2.821	2.731	2.695	2.698
2.6	2.932	2.655	2.550	2.548
3.0	3.265	2.920	2.793	2.785
	$\varepsilon=0.187$,		$\lambda=5$	
0.2	1.074	1.168	1.183	¢. 174
1.0	3.511	3.795	3.822	3.820
1.6	3.973	4.161	4.176	4.184
3.0	3.178	2.585	2.150	2.160
3.6	3.210	2.264	1.534	1.531
4.0	3.722	2.764	2.129	2.103
	$\varepsilon=0.187$,		$\lambda=12$	
0.2	6. 479	5.999	6.111	5.788
1.0	20.57	23.57	23.63	23.16
2.0	30.96	3'.04	30.23	30.80
2.6	32.87	30.13	28.12	23.34
	ε c 0.187,		$\lambda=70$	
0.2	174.0	235.0	104.4	113.1
1.0	839.8	1020	490.8	523.6
2.0	1605	1678	910.4	951.2
3.0	2299	2053	1268	1298
4.0	2922	2213	1570	1581
	$\varepsilon=0.273$,		$\lambda=5$	
0.2	1.055	1.149	$1.16{ }^{\prime}$	1.160
1.0	3.482	3.736	3.764	3.766
1.6	3.912	4.100	4.115	4.125
2.0	3.803	3.854	3.830	$3.8{ }^{\text {in }}$
	$\varepsilon=0.273$,		$\lambda=12$	
0.2	5.068	$5.93{ }^{\prime}$	6.051	6.013
1.0	20.54	23.37	23.52	23.37
2.0	30.42	33.86	30.40	30.60
	$\varepsilon=0.273$,		$\lambda=-70$	
0.2	170.2	240.3	102.5	114.4
1.0	821.4	10.37	482.6	544.6
2.0	1570	1702	897.2	1016
3.0	2248	2080	1254	1413
4.0	2857	2245	1558	1729
5.0	3100	2252	1812	1955
6.0	3979	2137	2010	2081
		0.5,	$=15$	
0.2	7.085	9.085	9.037	8.050
1.0	29.86	36.65	37.08	34.35
2.2	49.12	55.79	51.22	52.59

(Table 1 continued on the next page)
case of large λ this difference does not exceed 3\%.

In Fis. 2 and 3 the dependence of q_{0} on f is ahown, obtained in the first to fourth approximations when $\varepsilon=0.187 ; \lambda=2.5$. From these graphs it ia evident that the third and fourth approximatione are practically indistinguishable. In casen $\varepsilon=0.273$; $\lambda=15$ and $\varepsilon=0.7 ; \lambda=30$ satis factory agreement between the third and the fourth approximation is achieved only on segments of loading carves ehown in Figs. 5, 4 and 5. A sammary table of apper critical loadings is presented for varions values of ε and λ (Table 2). It may be noted that with increasing λ for a given ε the upper critical values $q_{0}{ }^{+}$increase as is evident from the presented table.

In the determination of diaplacements it was possible to obtain satisfactory accuracy on the basia of the fourth approximation. In this connection the approximation of the deflection curve was carried out by means of a polynomial of tenth degree in accordance with (2.2).

In Figs. 6 to 8 varions stages of loading of shells are represented for aeveral values of ε and λ. In Fig. 6 the case $\varepsilon=0.273 ; \lambda=5$ is examined.

Ponition I correaponda to loading qo, which is less than the upper critical value. Position II corresponds to loading $q_{0}{ }^{+}$which is the upper critical loading. The third position corresponda to loading q_{0} exceeding the upper critical value.

In Fig. 7 the development of equilibrium forms of the shell is given for veluen of $e=0.273$; $\lambda=12$, and, finally, in Fig. 8 three positions of nonshallow spherical segment are depicted for $\varepsilon=0.7$ and $\lambda=30$.

The magnitudes of apper critical values obtained in this paper in the case of $\varepsilon \leq 0.2 ; \lambda \leq 5$ diffor little from quantities $q_{0}{ }^{+}$for shallow spherical shelle.

For comparison we note that the value q^{+}calculated in the fourth approximation from the theory of shallow domea will be $q_{0}{ }^{+}=2.84$
(Table 1 eonelinued from previous page)

f	1	2	3	4
$8=0.5, \quad \lambda=70$				
0.2	153.5	268.0	93.51	100.9
1.0	740.3	1124	443.1	470.8
2.0	1414	1813	831.4	865.6
4.0	2569	2389	1483	1487
5.0	3055	2420	1760	1746
$\ell=0.7, \quad \lambda=30$				
0.2	23.80	46.04	23.50	21.25
1.0	109.5	176.3	132.6	97.25
2.0	195.1	253.3	232.0	175.8
3.0	258.7	273.2	288.9	241.4
4.0	302.1	259.0	303.0	291.5

Fig. 8
$(\lambda=4), q_{0}{ }^{+}=4.22(\lambda=5)$ and the corresponding values from theory of nonshallow domes are $q_{0}{ }^{+}=2.84, q_{0}{ }^{+}=4.22$.

It is appropriate to mention the noticeable offect of the nonahallow character of the shell on the lower

Table 2

c	$\lambda=70$	50	30	15	12	5	4
0.187	2121	901.1	251.3	50.05	30.8	4.184	2.814
0.273	2105	909.8	245.7	48.36	30.4	4.125	
0.5	2441	1026	276.5	52.85			
0.7			314.5				

critical valuea. Thas for $\lambda=4$ we have $q_{0}{ }^{-}=2.78$ according to the theory of shallow shelle and $q_{0}=2.53$ from the theory of nonshallow shells. For $\lambda=5, q_{0}{ }^{-}=3.00$ and $q_{0}{ }^{-}=1.48$, respectivoly. It may be noted that the theory of A.V. Pogorelov gives abstially higher values for upper critical loadinga

BIBLIOGRAPHY

1. Foodos'ev, V.I., On stability of a spherical shell under the inflaence of external aniformly distributed pressure. PMM Vol. 18, No. 1, 1954.
2. Vorovich, I.I., and Zipalova, V.F., On the solation of nonlinear boundary value problems of the theory of elanticity by a method of transformation to an initial value Cauchy problem. PMM Vol. 29, No. 5, 1965.
